Abstract
Polyamide thin film composite (TFC) membranes with tailored porous substrate and rejection layer are promising for forward osmosis (FO) applications. The current study investigates the effect of rejection layer synthesis conditions on the performance of the resulting TFC polyamide FO membranes. The influence of monomer concentrations (i.e., m-phenylenediamine (MPD) and trimesoyl chloride (TMC) concentrations) on the membrane separation properties as well as FO performance was systematically studied. A strong trade-off between the water permeability and salt rejection was observed, where increasing the TMC concentration or reducing the MPD concentration resulted in higher membrane permeability but lower salt rejection. In FO tests, membranes with poor salt rejection had severe solute reverse diffusion, which enhanced the internal concentration polarization (ICP). It was found that the FO water flux was governed by both the membrane water permeability and its solute rejection. For a membrane with higher water permeability but lower solute rejection, the reduced membrane frictional resistance was compensated by the simultaneously more severe solute-reverse-diffusion-induced ICP. The net effect on the FO water flux depends on the competition of these two opposing mechanisms. Under conditions where solute reverse diffusion may cause severe ICP (e.g., high draw solution concentration and high water flux level), membranes need be optimized to achieve a high salt rejection even if this is at the expense of lower water permeability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.