Abstract

Self-assembled monolayers (SAMs) of ferrocene-labeled α-helical peptides were prepared on gold surfaces and studied using electrochemical surface plasmon resonance (EC-SPR). The leucine-rich peptides were synthesized with a cysteine sulfhydryl group either at the C- or N-terminus, enabling their immobilization onto gold surfaces with control of the direction of the molecular dipole moment. Two electroactive SAMs were studied, one in which all of the peptide dipole moments are oriented in the same direction (SAM1), and the other in which the peptide dipole moment of one peptide is aligned in the opposite direction to that of its surrounding peptide molecules (SAM2). Cyclic voltammetry combined with SPR measurements revealed that SAM reorientations concomitant with the oxidation of the ferrocene label were more significant in SAM2 than in SAM1. The substantially greater change in the peptide film thickness in the case of SAM2 is attributed to the electrostatic repulsion between the electrogenerated ferrocinium moiety and the positively charged gold surface. The greater permeability of SAM1 to electrolyte anions, on the other hand, appears to effectively neutralize this electrostatic repulsion. The film thickness change in SAM2 was estimated to be 0.25 ± 0.05 nm using numerical simulation. The timescale of the redox-induced SPR changes was established by chronoamperometry and time-resolved SPR measurements, followed by fitting of the SPR response to a stretched exponential function. The time constants measured for the anodic process were 16 and 6 ms for SAM1 and SAM2 respectively, indicating that the SAM thickness changes are notably fast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.