Abstract

The Poisson’s ratio of Zr-based bulk metallic glasses in the system Zr63−xCu24AlxNi10Co3 was found to exhibit a non-monotonous behavior as a function of x when measured with ultrasound by the pulse–echo technique. In addition, from wave propagation velocity measurements at different frequencies, i.e. f = 2.25 MHz and f = 10 MHz, a composition-dependent anelastic behavior as a function of x is found, exhibiting a similar non-monotonous behavior. In this work we further investigated the plastic deformation and the creep properties of this glass system in compression tests and by nanoindentation. The plastic strain and the measured creep deformation show correlations with the Poisson’s ratio. We then discuss the anelastic behavior observed while measuring the sound-wave propagation velocity in the frame of the thermoelastic damping and the bond reorientation as proposed by Egami. Finally we discuss these effects with regard to X-ray diffraction analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.