Abstract
The rheological properties of the bituminous components (bitumen and bituminous mastic) within asphalt mixtures contribute significantly to the major distresses of flexible pavements (i.e. rutting, fatigue and low temperature cracking). Asphalt mixtures are usually composed of mastic-coated aggregates rather than pure bitumen-coated aggregates. The purpose of this study is to investigate the effects of mineral fillers on the rheological behaviour of several polymer-modified bitumens (PMBs) through laboratory mixing. A neat bitumen and two types of polymers (elastomeric and plastomeric) were used to produce PMBs, and two fillers with different minerals (limestone and basalt) were selected to obtain mastics. The dynamic shear rheometer (DSR) and bending beam rheometer (BBR) were used to characterize the rheological properties of PMBs and mastics. In particular, multiple stress creep recovery (MSCR) tests were performed to evaluate the rutting potential at high temperatures, whereas BBR tests were carried out to investigate the low temperature behaviour of these materials. BBR results for unmodified mastics show that the increase of stiffness is similar regardless of the filler type, whereas results for polymer-modified mastics indicate that the degree of stiffening depends on the combination of filler/polymer types. MSCR results show that adding filler leads to a reduced susceptibility of permanent deformation and an enhanced elastic response, depending on the combination of filler/polymer types. Overall results suggest that a physical–chemical interaction between the filler and bitumen occurs, and that the interaction level is highly dependent on the type of polymer modification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Traffic and Transportation Engineering (English Edition)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.