Abstract

In this study, metallic elements that have limited/negligible solubility in pure magnesium (Mg) were incorporated in Mg using the disintegrated melt deposition technique. The metallic elements added include: (i) micron sized titanium (Ti) particulates with negligible solubility; (ii) nano sized copper (Cu) particulates with limited solubility; and (iii) the combination of micro-Ti and nano-Cu. The combined metallic addition (Ti + Cu) was carried out with and without preprocessing by ball-milling. The microstructure and mechanical properties of the developed Mg-materials were investigated. Microstructure observation revealed grain refinement due to the individual and combined presence of hard metallic particulates. The mechanical properties evaluation revealed a significant improvement in microhardness, tensile and compressive strengths. Individual additions of Ti and Cu resulted in Mg-Ti composite and Mg-Cu alloy respectively, and their mechanical properties were influenced by the inherent properties of the particulates and the resulting second phases, if any. In the case of combined addition, the significant improvement in properties were observed in Mg-(Ti + Cu)BM composite containing ball milled (Ti + Cu) particulates, when compared to direct addition of Ti and Cu particulates. The change in particle morphology, formation of Ti3Cu intermetallic and good interfacial bonding with the matrix achieved due to preprocessing, contributed to its superior strength and ductility, in case of Mg-(Ti + Cu)BM composite. The best combination of hardness, tensile and compressive behavior was exhibited by Mg-(Ti + Cu)BM composite formulation.

Highlights

  • The growing demand for reduced fuel consumption and fuel energy savings in automobile and aerospace applications is constantly driving the materials community towards the development of new light-weight metallic materials [1,2]

  • Synthesis of pure Mg and the Mg-based materials required for the study was successfully carried out by the disintegrated melt deposition (DMD) technique followed by hot extrusion

  • The obtained experimental values are relatively low in comparison to similar works and this confirms the successful synthesis of near-dense materials with minimal porosity (≤0.16%) through

Read more

Summary

Introduction

The growing demand for reduced fuel consumption and fuel energy savings in automobile and aerospace applications is constantly driving the materials community towards the development of new light-weight metallic materials [1,2]. The advantages of Mg materials include superior damping capacity, high specific stiffness, good dimensional stability, machinability and castability Despite these advantages, the extended wide spectrum of applications of Mg materials is constrained by the low ductility and inferior fracture toughness, which is due to the hexagonal closed packed crystal structure of Mg [1,2,3,4,5,6]. The extended wide spectrum of applications of Mg materials is constrained by the low ductility and inferior fracture toughness, which is due to the hexagonal closed packed crystal structure of Mg [1,2,3,4,5,6] Most of these limitations can be circumvented through the judicious addition of selective alloying elements such as

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.