Abstract

Fe2B is a kind of typical intermetallic compound, which has good corrosion resistance in molten zinc. However, the fatal intrinsic brittleness limits its further application in the Hot-Dip Galvanizing Industry. Therefore, it is worthwhile to improve the toughness of Fe2B phase. In this study, the fracture toughness property of Fe2B phase with and without micro-addition chromium is investigated. In comparison with pure Fe2B phase, the intrinsic brittleness of Fe2B phase with chromium is lower. In addition, the valence electron structure of Fe2B containing various chromium content is calculated by the method of bond length difference (BLD). The results show that, in the (Fe1-x Crx)2B phase, the number of covalent electron pairs and the weaker bond energy are increased by the substituting atom-Cr. The calculated results are in good agreement with experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.