Abstract
Liposomal membrane fusion is an important tool to study complex biological fusion mechanisms. We use lipidated derivatives of the specific heterodimeric coiled coil pair E: (EIAALEK)3 and K: (KIAALKE)3 to study and control the fusion of liposomes. In this model system, peptides are tethered to their liposomes via a poly(ethylene glycol) (PEG) spacer and a lipid anchor. The efficiency of the fusion mechanism and function of the peptides is highly affected by the PEG-spacer length and the lipid anchor type. Here, the influence of membrane–fusogen distance on the peptide–membrane interactions and the peptide secondary structures is studied with Langmuir film balance and infrared reflection absorption spectroscopy. We found that the introduction of a spacer to monolayer-tethered peptide E changes its conformation from solvated random coils to homo-oligomers. In contrast, the described peptide–monolayer interaction of peptide K is not affected by the PEG-spacer length. Furthermore, the coexistence of different conformations when both lipopeptides E and K are present at the membrane surface is demonstrated empirically, which has many implications for the design of effective fusogenic recognition units and the field of artificial membrane fusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.