Abstract

This paper reports the successful synthesis and formation of nanoparticle forsterite powder by mechanical activation and its subsequent annealing. Talc and magnesium carbonate were used as basic starting reactants. Simultaneous thermal analysis (STA), X-ray diffraction (XRD), scanning electron microscopy (SEM), dynamic light scattering (DLS), atomic absorption spectrometry (AAS) and Fourier transform infrared spectroscopy (FT-IR) techniques were utilized to characterize the as-milled and annealed samples. The results showed that forsterite was not produced directly and that the formation of enstatite was unavoidable during the synthesis of forsterite. The nanoparticle forsterite powder obtained had a crystallite size of 30 nm and mean particle size of 135 nm after 10 h milling and subsequent annealing at 1000 °C for 10 min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.