Abstract
Grazing impact experiments of various types of stainless steels were performed in explosive atmospheres of hydrogen, acetylene, ethylene or propane with air. Depending on the gas mixture, kinetic energy of the impact, and applied stainless steel, the dominant ignition sources are either separated particles or hot friction surfaces. An influence of chromium content on the ignition probability was not found, although an increase in chromium content results in a reduction of the oxidizability of separated particles. Additionally, the influence of the material properties thermal conductivity, specific heat, density and hardness on the ignition probability of the hydrogen–air mixture was investigated. With increasing thermal conductivity a decreasing rate of ignitions was observed. In contrast, an influence of the physical properties specific heat, density and hardness on the ignitability was not found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.