Abstract

Randomly mixing ferromagnetic (FM) and antiferromagnetic (AFM) elements in high-entropy alloys (HEAs) can create fluctuating local magnetic moments that influence the energetics of point defects. In this study, we employed first-principles calculations to investigate the influence of magnetic properties on vacancy migration energy in Fe49.5Mn29.4Co10.1Cr10.1C0.9, alongside equiatomic NiCoFeCrMn alloy. By examining structures with paramagnetism, ferromagnetism, and no spin polarization, our study reveals significant impacts of magnetic interactions on vacancy migration barriers, potentially altering the sequence of elemental migration energies if overlooked. In Fe49.5Mn29.4Co10.1Cr10.1C0.9, the order of vacancy migration barriers is Co > Fe > Mn > Cr across all magnetic states, suggesting the dominant roles of atomic properties and inherent chemical bonding. Conversely, the NiCoFeCrMn HEA exhibits a pronounced magnetic state-dependent elemental migration energy order, indicating that magnetic interactions significantly influence vacancy migration behavior in this alloy. In addition, while FM elements generally exhibit higher migration barriers, AFM elements display lower barriers in the investigated Cantor alloys, with notable variations between the studied compositions. These findings underscore the critical role of magnetism in accurate migration energy calculations, which is important for studying chemically biased diffusion and radiation-induced segregation in HEAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.