Abstract

We perform a first-principles study of lattice dynamics in the low-temperature P21nm phase of orthorhombic YMnO3. By considering several possible antiferromagnetic types, we show how magnetic ordering of the system affects its vibrational properties. We find that the experimentally observed magnetic E-type corresponds to the most energetically favorable state and yields phonon spectra, which are consistent with experimental observations. The influence of on-site Coulomb correlations on phonon spectra is also examined. Such effects produce noticeable changes in the spectra and provide a step toward a more accurate description of lattice dynamics in YMnO3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.