Abstract

Leading-edge tubercles on the humpback whale pectoral fin are known to have aerodynamic benefits, particularly in the post-stall regime. In this research, a horizontal-axis wind turbine blade was modelled with tubercles distributed on its leading edge to mimic the humpback whale pectoral fin. A parametric study of the effect of tubercles on the reference NREL Phase VI wind turbine was conducted via computational fluid dynamics. Three parameters—amplitude, wavelength, and tubercle location along the blade span—were varied. The results showed that tubercles have negative effects on the turbine performance at wind speeds (V∞) ≤ 7 m/s. However, when tubercles are placed over 60% of the blade span, the backflow area can be eliminated at V∞ = 10 m/s. It is found that the vortices in the stable-flow zone over the suction surface can be reduced when tubercles of a relatively small amplitude-wavelength ratio are employed, thereby maintaining turbine performance. Compared with the reference blade, tubercles provided benefits at higher wind speeds. The generated vortices due to the presence of tubercles, leading to both blockage effects and stall delay. The results revealed that the pressure on the suction surface of the tubercled blade decreases, thereby increasing lift and enhancing the turbine performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.