Abstract
40Cr steel is one of the most common materials for manufacturing brake camshaft of trailer. The brake camshaft is subjected to extreme wear during its service life. In order to enhance wear resistance, medium frequency induction hardening (MFIH) treatment is usually conducted on the surface of brake camshaft. However, conventional MFIH technique requires heating of the entire surface, which has the drawbacks of more power consumption, high production cost and easy deformation. Therefore, inspired by the bionic theory, a process named as “laser bionic semisolid treatment” method accompanied by favorable surface roughness and minimum distortion has been proposed herein as an alternative to MFIH method. By this means, bionic units with different surface roughness, sizes microstructure and hardness were manufactured on the surface of 40Cr steel. Then, the wear resistance of 40Cr steel with various laser energy densities was experimentally investigated. The results demonstrated that when the laser energy density was $$ 18.00_{ - 3}^{ + 3} $$ J/mm2, the bionic semisolid unit was obtained with the arithmetic mean surface roughness Ra of 1046.81 nm. Moreover, there was a significant improvement in the wear resistance of 40Cr steel due to the microstructure and higher hardness compared with the untreated sample, and its weight loss ratio was decreased by 71.90%. The mechanism of wear resistance enhancement was also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.