Abstract

A laboratory study was undertaken on the transport and the deposition of suspended particles (silt of modal diametre 6 µm) in three columns of different length, filled with glass beads or gravel. Tracer tests were carried out at various flow velocities by short pulses of a mixture of suspended particles/dissolved tracer. The breakthrough curves were competently described with the analytical solution of a convection dispersion equation with a first-order deposition rate and the hydro-dispersive parameters were deduced. For the same experimental conditions, the results showed a difference in the behaviour of the suspended particles transport and deposition rates within the two porous media tested. The internal structure of both media governs the particle-grain collision frequency as well as the particles trapping. The scale effect was highlighted and affects the dispersivity, the size exclusion effect, the recovery rates and the deposition rates. Longitudinal dispersion increases with mean pore velocity and is described with a nonlinear relationship. The dispersivity increases with the column length. The size exclusion effect is more important in the short column. The recovery rate increases with flow velocity and decreases while increasing column length. The deposition rates increases until a critical flow velocity then decreases. This critical velocity is also sensitive to the scale effect, and increases with the column length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.