Abstract

The influence of microstructure of the fiber-matrix interface on the interfacial shear strength, measured using a fiber-pushout technique, has been examined in a sapphire-fiber-reinforced NiAl(Yb) matrix composite under the following conditions: (1) as-fabricated powder metallurgy (PM) composites, (2) PM composites after solid-state heat treatment (HT), and (3) PM com-posites after directional solidification (DS). The fiber-pushout stress-displacement behavior con-sisted of an initial “pseudoelastic” region, wherein the stress increased linearly with displacement, followed by an “inelastic” region, where the slope of the stress-displacement plot decreased until a maximum stress was reached, and the subsequent gradual stress decreased to a “fric-tional” stress. Energy-dispersive spectroscopy (EDS) and X-ray analyses showed that the inter-facial region in the PM NiAl(Yb) composites was comprised of Yb2O3,O-rich NiAl and some spinel oxide (Yb3Al5O12), whereas the interfacial region in the HT and DS composites was comprised mainly of Yb3Al5O12. A reaction mechanism has been proposed to explain the pres-ence of interfacial species observed in the sapphire-NiAl(Yb) composite. The extent of inter-facial chemical reactions and severity of fiber surface degradation increased progressively in this order: PM < HT < DS. Chemical interactions between the fiber and the NiAl(Yb) matrix resulted in chemical bonding and higher interfacial shear strength compared to sapphire-NiAl composites without Yb. Unlike the sapphire-NiAl system, the frictional shear stress in the sap-phire-NiAl(Yb) composites was strongly dependent on the processing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.