Abstract

An Al-3% Mg-0.2% Sc alloy was subjected to annealing or solution treatment and further processed by HPT at room temperature. Microhardness measurements were taken along the middle-sections of the discs and they demonstrated that a very substantial hardening is achieved during HPT processing regardless of the initial heat treatment. Hardness values of ~200 Hv were recorded at the edge of the samples although the microhardness distribution remained inhomogeneous along the diameters of the discs after 20 turns of high-pressure torsion. In addition, the microhardness of the solution treated Al-Mg-Sc samples continued to increase with the equivalent strain imposed by the anvils even after 30 turns of HPT processing whereas the hardness at the edges of the annealed discs saturated after 10 turns. These differences in the hardness evolution are attributed to the higher Mg content in solid solution in the case of the solution treated samples and its influence on delaying the recovery rate of this aluminium alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.