Abstract
Serotonergic (5HT) neurons of the dorsal raphe nuclei receive excitatory input from hypothalamic orexin (hypocretin) neurons and reciprocally inhibit orexin neurons through the 5HT1A receptor. However, the physiological significance of this negative feedback circuit for sleep/wakefulness regulation is little understood. 5HT1A receptor expression level was specifically and reversibly controlled in the orexin neurons using the Tet-off system. The responsiveness of orexin neurons to 5HT in vitro and the sleep/wakefulness patterns were compared between 5HT1A-overexpressing and control mice. When the 5HT1A receptor was overexpressed in orexin neurons of Orexin-EGFP; orexin-tTA; TetO Htr1a mice, 5HT-induced inhibition of orexin neurons was prolonged. In the absence of doxycycline, Orexin-tTA; TetO Htr1a mice exhibited severe fragmentation of sleep/wakefulness during the first half of the dark period-the time of maximal activity in nocturnal rodents-without affecting sleep/wakefulness during the light period when sleep time is maximal. However, when the 5HT1A receptor in orexin neurons was reduced to basal expression levels in the presence of doxycycline, sleep/wakefulness patterns in Orexin-tTA; TetO Htr1a mice during the early active period were indistinguishable from those of littermate TetO Htr1a mice. These results strongly suggest that enhancement of inhibitory serotonergic input to orexin neurons caused fragmentation of wakefulness. In contrast, sleep/wakefulness architecture in the light period was unaffected by 5HT1A receptor overexpression in the orexin neurons. Inhibitory serotonergic input likely functions as negative feedback to orexin neurons in the early dark period and helps stabilize wakefulness bouts, thereby contributing to the diurnal rhythm of sleep and wakefulness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.