Abstract

The effect of percolation through a permeable bed on sediment suspension under regular waves was examined in a laboratory wave tank (28 m×1 m×1 m), using acoustic backscatter sensors to make rapid (3 Hz) suspended sand profile measurements (0.005 m vertical resolution). Waves of 1.7 s period and heights ranging from 0.14 to 0.185 m were used over sand with a D 50 of 255 μm. Infiltration velocities of 0–5.0×10 −4 m s −1 were used. With percolation through an initially flat bed, ripple development was suppressed, particularly at lower wave heights; ripples took longer to form and were more three-dimensional. Suspension was also suppressed. The total suspended load was correlated with Shields number (at the 1% significance level) when the Shields number was modified to take account of both the infiltration [Nielsen, P., 1997. Coastal groundwater dynamics. Proceedings of Coastal Dynamics, American Society of Civil Engineers, pp. 546–555] and ripple steepness [Coastal Eng. (1986) 23]. The ripple steepness was found to be the most important factor relating to the reduction in the total suspended loads. The influence of infiltration on time-averaged concentration profiles over equilibrium ripples was investigated by switching the percolation on and off for 5-min periods. The total suspended loads were reduced by up to 50% with percolation on. These results suggest that fluctuation of the water table and drainage within a beach will affect sediment transport and ripple dynamics, and that for sand of 0.25 mm, percolation will tend to reduce suspension and transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.