Abstract

The main goal of the present work was to investigate the influence of infill density (ID) on microstructure and flexural behavior of 3D printed parts by conducting three points bending test (3PBT). Flexural behavior of 3D printed parts is mainly dependent on ID which applied during printing. A thermoplastic of poly-lactic acid (PLA) was selected as material which can be best suitable for artificial tissue/bone engineering applications. Further, most of the artificial bones/tissues are subjected to fail due to bending load. Therefore, the effect of ID on the flexural strength of PLA (Bio-degradable) materials is important; which was addressed through this research work. Here, the PLA material was printed using fusion deposition modeling (FDM) by varying ID (40, 60, 80, and 100%). The 3D printed cylindrical specimen of 15 mm in diameter and 30 mm span was used. The bending responses in terms of bending stress-strain and bending force-deflection at each ID were investigated and reported. Furthermore, the fracture bending stress, fracture bending strain, flexural modulus, and stiffness of the printed sample were measured and correlated to the ID. The experimental result has shown that the bending characteristics influenced a strong correlation with ID percentage. The result suggested that the 80% ID was the optimum percentage which possessed considerable strength and toughness. Besides, the specimen surface morphology and the fracture topography were investigated and reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.