Abstract

This paper explains the effect of having an inertial stimulus (motion platform) for driving simulators on proximity to the reality for the sensed lateral dynamics with respect to the measurements and the perceptual fidelity using a questionnaire technique. To assess this objectively, the vestibular and vehicle level lateral accelerations (ay,sensed=ay_vest, ayv=ay_veh ) were saved by using a motion tracking sensor and SCANeR studio software respectively. A confidence interval of 95% was chosen to test the correlations (Pearson’s correlation) and to fit models for the distributions of the visual-vestibular lateral accelerations with the multiple linear regression between the conditions of static (N=16) and dynamic (N=21) platform cases in terms of visuo-vestibular level lateral accelerations for the group of subjects (N=37). The results showed that the dynamic platform provides a higher lateral dynamics reality (positive correlation with an incidence of 90.48% for N=21) compared to the static configuration (negative correlation with an incidence of 50% for N=16) from Pearson’s correlation and a better fitted model and a lower visuo-vestibular cues’ conflict for the dynamic (R2=0.429, the model is positive sloped, N=21) condition comparing to the static one (R2=0.072, the model is negative sloped, N=16) from the multiple linear regression models. A two-tailed Mann Whitney U test yielded that the Ucomputed (2139)>Uexpected (1300.5) as p<0.0001, there was a significant difference between the sensed lateral acclerations for the static and dynamic platform cases. Disorientation related perception had positive correlations with the vestibular sensed lateral accelerations for the static condition whereas they were negatively correlated in the dynamic case. As conclusion, the dynamic platform presented a reduced level of motion sickness depending on the sensory conflict theory and the perception fidelity studies approved that dizziness was found to have a significant positive correlation with the vestibular level measured lateral acceleration in the static platform (r=0.293, p=0.037<0.05).

Highlights

  • Maintaining a sustainable reality of the represented dynamics is a very difficult and sometimes even an impossible issue by using driving simulators

  • The major leading reasons of this problem are the constrained workspace of the driving simulator and whether a motion platform exists integrated with the driving simulator

  • The red curve was depicting the lateral acceleration of the vehicle center of gravity and it was same for the both cases

Read more

Summary

Introduction

Maintaining a sustainable reality of the represented dynamics is a very difficult and sometimes even an impossible issue by using driving simulators. The first driving simulators were fixed-base and the simulation was principally only realized by the visual stimulus [1,2] to constitute the self-motion perception. This perception is based on the displacement of visual scene flow on the retina referring to the information about the velocity, direction of the motion and the relative distances [3]. The utilization scope diversifies from driver training to research purposes such as vehicle dynamics control, advanced driving assistance systems (ADAS) [21]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.