Abstract

The Alexander–Haasen theory, which describes the deformation kinetics of silicon crystals, has been generalized for impurity crystals. The deformation kinetics of an impurity sample is calculated in a wide range of parameters, including the cases of partial and complete entrainment of impurities by moving dislocations. The developed model, despite its simplicity, adequately describes the qualitative transformation of the stress–strain curves of impurity silicon crystals in dependence of the impurity concentration and other material parameters. The manifestation of negative velocity dependence of the yield stress, observed in natural experiments, is analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.