Abstract

Hypovolemia decreases the dose requirement for anesthetics, but no data are available for propofol. As it is impossible to study this in patients, a rat model was used in which the influence of hypovolemia on the pharmacokinetics and pharmacodynamics of propofol was investigated. Animals were randomly allocated to either a control (n = 9) or a hypovolemia (n = 9) group, and propofol was infused (150 mg x kg(-1) x h(-1)) until isoelectric periods of 5 s or longer were observed in the electroencephalogram. The changes observed in the electroencephalogram were quantified using aperiodic analysis and used as a surrogate measure of hypnosis. The righting reflex served as a clinical measure of hypnosis. The propofol dose needed to reach the electroencephalographic end point in the hypovolemic rats was reduced by 60% (P < 0.01). This could be attributed to a decrease in propofol clearance and in distribution volume. Protein binding was similar in both groups. To investigate changes in end organ sensitivity during hypovolemia, the electroencephalographic effect versus effect-site concentration relation was studied. The effect-blood concentration relation was biphasic, exhibiting profound hysteresis in both hypovolemic and control animals. Semiparametric minimization of this hysteresis revealed similar equilibration half-lives in both groups. The biphasic effect-concentration relation was characterized by descriptors showing an increased potency of propofol during hemorrhage. The effect-site concentration at the return of righting reflex was 23% (P < 0.01) lower in the hypovolemic animals, also suggesting an increased end organ sensitivity. An increased hypnotic effect of propofol occurs during hypovolemia in the rat and can be attributed to changes in both pharmacokinetics and end organ sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.