Abstract

Herbicide application is a practice commonly used in agricultural systems because it is an efficient method of weed control. An inherent characteristic of some herbicides used in mountain agriculture, such as oxyfluorfen, is high adsorption to soil organic matter (SOM). Thus, intensive management that changes the quantity and quality of SOM, such as soil tillage and the massive application of organic fertilizers such as poultry litter, may favor soil contamination by this herbicide and alter its dynamics in the environment. Therefore, this study aimed to characterize the structures of humic substances (HSs) in the soil of forest areas and areas with intensive production of vegetables, relating them to the accumulation of the herbicide oxyfluorfen in tropical mountain agroecosystems. Organic carbon content was quantified in HSs, humic acid (HAs) were structurally characterized by CP/MAS 13C-NMR spectroscopy, and the oxyfluorfen molecule was detected and quantified using the QuEChERS residue detection method with subsequent analysis by LC-MS/MS. Oxyfluorfen was not detected in the forest areas, but it was detected in the vegetable growing areas at points with the lowest slope and high contents of organic matter and clay, with values of up to 0.13 mg kg−1. The intensification in the SOM mineralization process, promoted by the intensive management adopted in the vegetable growing areas, resulted in a 16.46% reduction in COT, a 58.84% reduction in the carbon content in the form of SH and a reduction in the structures that give recalcitrance to the HA molecule (CAlkyl-H,R, CCOO–H,R, CAromatic-H,R, and CAromatic-O) when compared to those values in the forest area, presenting HAs with more aliphatic and labile properties. Thus, due to the structural characteristics of the HAs in the vegetable production areas, the herbicide oxyfluorfen showed a close relationship with the more aliphatic oxygenated structures, namely, CAlkyl-O,N, CAlkyl-O and CAlkyl-di-O.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.