Abstract

ZnO buffer layers with different thicknesses were deposited on a-plane sapphire substrates at 300°C. ZnO epilayers were grown on ZnO buffers at 600°C by radio-frequency magnetron sputtering and vacuum annealed at 900°C for an hour. Influence of nucleation layer thickness on the structural and quality of ZnO thin films was investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), and Raman spectroscopy. The best ZnO film quality was obtained with the ZnO buffer layer of 45nm thick which provided the smoothest surface with RMS value of 0.3nm. X-ray diffraction measurements reveal that the films have a single phase wurtzite structure with (0001) preferred crystal orientation. As evident from narrow FWHM of ZnO (0002) rocking curve, ZnO buffer can serve as a good template for the growth of high-quality ZnO films with little tilt. In addition, the micro-Raman scattering measurements at room temperature revealed the existence of Raman active phonon modes of ZnO; A1(TO), A1(LO) and E2(high). The latter two modes were not observed in thin buffer layer beside the dis-appearance of E2(low) mode in all films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.