Abstract
ObjectiveTo explore and characterize the effect of the discrepancy between crestal bone height (CB) and pulp chamber floor (PCF) in the fatigue performance of endodontically-treated teeth rehabilitated with an endocrown restoration. Materials and methodsA total of 75 human molars free of defects, caries history or cracks were selected, then endodontically treated and randomly allocated into 5 groups (N = 15) according to the difference between PCF and CB, as follows: PCF 2 mm above, PCF 1 mm above, PCF leveled, PCF 1 mm below and PCF 2 mm below. Endocrown restorations were made with composite resin (Tetric N-Ceram, shade B3, Ivoclar) in 1.5 mm thickness and luted with a resin cement (Multilink N, Ivoclar) onto the dental elements. Monotonic testing was performed to define the fatigue parameters, and a cyclic fatigue test was used until failure of the assembly. The collected data were submitted to statistical survival analysis (Kaplan-Meier followed by Mantel-Cox and Weibull), fractographic analysis and finite element analysis (FEA) were performed as complementary analyzes. ResultsThe PCF 2 mm below and PCF 1 mm below groups presented the best results regarding fatigue failure load (FFL) and number of cycles for failure (CFF) (p < 0.05), but presented no difference between each other (p > 0.05). The PCF leveled and PCF 1 mm above groups presented no statistical difference between them (p > 0.05), but performed better than the PCF 2 mm above group (p < 0.05). The rate of favorable failures of PCF 2 mm above, PCF 1 mm above, PCF leveled, PCF 1 mm below and PCF 2 mm below groups were 91.7%, 100%, 75%, 66.7% and 41.7%, respectively. FEA showed different stress magnitudes according to the pulp-chamber design. ConclusionThe insertion level of the dental element to be rehabilitated with an endocrown interferes in the mechanical fatigue performance of the set. The discrepancy between the CB height and the PCF has a direct effect, where the higher the PCF in relation to the CB, the greater the risk of mechanical failure of the restored dental element.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.