Abstract

In this investigation, the optical properties of the thermally evaporated SnO2 films and their dependence on the heat treatment were studied. The transmittance, T (λ), spectra were measured over the spectral range of 0.2 to 0.8 μm for SnO2 films that were annealed at different temperatures (300, 350, 400, 450, 500, 550 and 600 K) in vacuum for 1h. All films showed high transparency in the visible range and increased with increasing the wavelength. These films have become more transparent after annealing at different temperatures. The optical constants of annealed SnO2 films were obtained by modeling the measured transmission spectra. The best fit modeling of transmission spectra was obtained by applying Drude and OJL models combined with the effective medium approximation Bruggeman model. Increasing the annealing temperatures decreased both the refractive index and the extinction coefficient of the films. While the optical band gap energy increased from 3.05 to 4.11 eV by increasing the annealing temperature from 300 to 600 K, respectively. Analyzing the refractive index dispersion by using the Wemple-DiDomenico model revealed that the oscillator resonance energy Eo decreased whereas the oscillator dispersion energy Ed increased with increasing the annealing temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.