Abstract
The effects of grain size on the electrochemical corrosion behavior of a Ni-based superalloy nanocrystalline (NC) coating fabricated by a magnetron sputtering technique, has been investigated in 0.5 M NaCl + 0.05 M H 2SO 4 solution. Coatings with grain sizes 10 nm, 50 nm and 100 nm were fabricated on glass and the superalloy substrates. The results indicate that a passive film with porous property, n-type semiconductive property and incorporation of chloride ions formed on the NC coating with 100 nm grain size, which increased the susceptibility to pitting corrosion. The NC coatings with 10 nm and 50 nm grain size formed compact, non-porous and p-type passive films without chloride ions, which improved resistance to pitting corrosion. The smaller grain size of the material decrease the amount of chloride ions adsorbed on the surface and promoted the formation of compact passive film, which significantly increased the material's resistance to pitting corrosion in acidic solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.