Abstract

The influence of the anisotropy of elastic energy on the phonon propagation and phonon transport in single crystal nanofilms with different types of anisotropy of elastic energy in a Knudsen flow of a phonon gas is studied. The angular distribution of phonon mean free paths in the planes of the films and in their cross section is analyzed. The physical reasons leading to the dependence of the thermal conductivity on the orientation of the film planes and the directions of the heat flux relative to the crystal axes are studied. An analysis of the effect of focusing on the phonon propagation made it possible to explain the qualitative difference between the anisotropy of phonon mean free paths in films of cubic nanocrystals of various types having different orientations of the planes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.