Abstract

Acid/base and conformational properties of a weak polyelectrolyte chain surrounded by explicit ions (counterions and salt particles) are investigated using Monte Carlo simulations. The influence of the pH, monomer size, presence of explicit ions, salt particles, salt size, and valency on the polyelectrolyte titration process is systematically investigated. It is shown that the presence of explicit ions, the increase in pH and monomer sizes, and the decrease in salt radius are parameters that favor the monomer deprotonation processes hence affecting the global acid/base polyelectrolyte chain properties. The competition between attractive and repulsive, long-range and local electrostatic interactions leads to a heterogeneous distribution of charges and ions along the polyelectrolyte backbones. This subtle electrostatic competition leads to equilibrated chain conformations ranging from extended to globular conformations. A simple screening effect is achieved with monovalent salt resulting in a slight limitat...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.