Abstract

AZ91 magnesium alloys modified by Er and Ce are fabricated (referred to as AZErCe) and their stress corrosion cracking (SCC) behaviors are studied by slow strain rate tensile (SSRT) method in air, humid atmosphere with and without chloride. The addition of Er and Ce promotes the formation of Al3Er and Al11Ce3 phase and reduces both the size and the volume fraction of β‐phase. AZErCe possess improved corrosion resistance and passivation characteristic compared to AZ91 due to the reduced micro‐galvanic corrosion and the more protective films. SSRT tests demonstrate that the joint addition of Er and Ce effectively improve the SCC resistance of AZ91 alloy. In particular, the representative fractography of AZErCe exhibits lesser effect of hydrogen embrittlement than AZ91. The improved SCC resistance of AZErCe can be ascribed to the presence of Er and Ce, which alleviate corrosion of Mg matrix and thus weaken the effect of hydrogen embrittlement on SCC resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.