Abstract

The economically important crop pest Ephestia kuehniella was tested at two stages of larval development for susceptibility to Bacillus thuringiensis Cry1Aa toxin. Bioassays showed that toxicity decreased during the development of larvae stage. In fact, Cry1Aa toxins from BNS3-Cry− (pHT-cry1Aa) showed low toxicity against the first-instar larvae (L1) with a LC50 value of about 421.02μg/g of diet and was not toxic against the fifth-instar (L5), comparing to the BLB1 toxins used as positive control which represent a LC50 value of about 56.96 and 84.21μg/g of diet against L1 and L5 instars larvae, respectively. Effects of Cry1Aa toxins were reflected in histopathological observations by the weak destruction of midgut epithelium, slight hypertrophy of epithelial cells, and minor alteration of brush border membrane (BBM) detected mainly in L1 larvae stage comparing to the more extensive damage caused by BLB1 toxins. Interestingly, in vitro proteolysis of Cry1Aa toxins was found to correlate with the difference of toxicity during larval stage development. In fact, the weak proteinase activity detected inside the L1 midgut has led to the persistence of the Cry1Aa active forms (65 and 58kDa) during prolonged incubations, causing the alterations described previously. Three subfamilies of aminopeptidase (APN) receptors were detected in both larvae instars with different intensities and molecular weights (150kDa and 55kDa for APN1, and 90kDa for APN2 and APN4). Remarkably, binding assay using Cry1Aa toxin seems to have no direct correlation with larval stages toxicity differences, since same putative receptors were detected. Understanding the reasons for the clear differences in the effectiveness of Cry1Aa toxins during larval development stages of E. kuehniella is very important for the design of future improvement insecticidal approaches and for the accomplishment of resistance prevention strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.