Abstract
Global climate change can affect the energy content of fish by altering their lipid physiology and consumption. We investigated the effects of different environmental stressors on the lipid content of the Baltic herring (Clupea harengus membras) from spawning ground samples that were collected annually in the northern Baltic Sea. During 1987–2014, the average lipid content of herring muscle decreased from 5%–6% (wet mass) to 1.5% (wet mass). Generalized linear mixed models indicated that sea water salinity and the size of the herring stock explained best the declining trend of lipid content. We estimated that the amount of the lipid storage incorporated in the spawning stock decreased by approximately 45% during the study, with respective energy content decreases. Fatty acid composition analysis revealed that herring lipids contained a high proportion of EPA (eicosapentaenoic acid; 20:5n-3) and DHA (docosahexaenoic acid; 22:6n-3), which likely originated from its main summertime prey, Limnocalanus macrurus. The results illustrate various climate change-induced processes leading to changes in the lipid content of the Baltic herring and, consequently, to changes in the energy flows of the northern Baltic ecosystem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Canadian Journal of Fisheries and Aquatic Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.