Abstract

The present article examines the magnetohydrodynamic blood flow in an asymmetric channel with heat dissipation. The exact solutions for the velocity, pressure gradient and temperature are provided for both the cases such as the presence and absence of electromagnetic force under the long wavelength and low Reynolds number assumptions. The pressure rise expression has been computed using numerical integration. The graphical results have been presented to analyze the physical behavior of various physical parameters of interest. The present study reveals that the higher values of pressure gradient and axial velocity appears in the presence of electromagnetic force as compared with an absence of electromagnetic force. This result highlights that electromagnetic force is useful for strengthening the pressure gradient and velocity of fluid. The physiologists use the concept of electromagnetic or magnetic forces to maintain the pressure gradient levels in patients. The role of the heat exchange coefficient may control body temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.