Abstract
Fabrication of microparts has become increasingly important with an advancement of product miniaturization in various fields. Microgrooves are used as one of the key microfeatures in many microproducts like microthermal devices, microheat exchangers, microreactors, micropumps, and micromechanical systems. Electrochemical micromachining (EMM) can be effectively utilized for the fabrication of microgrooves because of its important benefits like reusability of the tool, no stress, burr-free surfaces, and ability to cut the material irrespective of the hardness. This paper presents the influence of EMM parameters like applied voltage, pulse frequency, duty ratio, tool feed rate, and electrolyte concentration on the machining accuracy, i.e., width overcut, depth overcut, and material removal rate during fabrication of a 500 μm-deep microgroove in stainless steel. An in situ-fabricated tungsten microtool of 110 μm diameter was used to generate a microgroove using the developed EMM setup. A high-quality microgroove with 55 μm width overcut and 10-μm depth overcut with an aspect ratio of 2.31 was fabricated using the optimum setting of machining parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.