Abstract

The effect of the insulator-mixed-material edge on the galvanic corrosion rate of magnesium alloy (AE44)-mild steel (MS) couple is experimentally studied using scanning vibrating electrode technique (SVET), profilometry, and classical electrochemistry. The local and average corrosion rates estimated from the experimental depth of anodic attack profile of AE44-MS couple are validated by 2D and 3D corrosion numerical models. Our study demonstrates experimentally and theoretically that the presence of the insulator edge increases the local current density, which enhances the corrosion rate. The extent of the local corrosion rate enhancement and its effect on the overall corrosion rate of the mixed material is discussed and depends on the mixed material's geometry and the edge type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.