Abstract

Lightly Dy-doped CdO thin films (molar 0.5%, 1%, 2%, and 2.5%) have been prepared by a vacuum evaporation method on glass and Si wafer substrates. The prepared films were characterised by X-ray fluorescence, X-ray diffraction, UV–vis-NIR absorption spectroscopy, and dc-electrical measurements. Experimental data indicate that Dy 3+ doping slightly stretchy-stresses the CdO crystalline structure and changes the optical and electrical properties. The bandgap of CdO was suddenly narrowed by about 20% due to a little doping with Dy 3+ ions. Then, as the Dy doping level was increased, the energygap was also increased. This variation was explained by the effect of Burstein–Moss energy shift (or bandgap widening effect) together with a bandgap shrinkage effect. The electrical behaviour of the samples shows that they are degenerate semiconductors. However, the 2% Dy-doped CdO sample shows an increase in its mobility by about 3.5 times, conductivity by 35 times, and carrier concentration by 10 times relative to undoped CdO film. From transparent conducting oxide point of view, Dy is sufficiently effective for CdO doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.