Abstract

Background. For multiplying the capacity of a radio link by using multiple antennas at the transmitter and receiver ends, wireless communication networks use the MIMO technique. The quality of MIMO wireless communication may worsen when either the transmitter or receiver end is in motion, or they both are in motion. To sustain high quality of links, MIMO operates, in particular, on channel state information by using orthogonal pilot sequences.Objective. The goal is to estimate the bit-error-rate performance of 2×2, 3×3, and 4×4 MIMO systems with orthogonal pilot sequences for a range of Doppler shifts by the Rician fading distribution modeling the scenario of direct line-of-sight path. The estimation is believed to answer the question on MIMO efficiency by ascertaining whether increasing the number of antennas mitigates the Doppler effect in 2×2 to 4×4 MIMO systems with direct line-of-sight path.Methods. To achieve the goal, 2×2 to 4×4 MIMO systems with channel state estimation are simulated. The simulation is configured and carried out by using MATLAB® R2019a Communications System ToolboxTM functions. The 35 subcases of the frame length and number of pilot symbols per frame are considered.Results. The near-exponential-type decreasing of the bit-error-rate performance is almost not violated by no motion, whereas further speed increments destroy it for 2×2 MIMO systems. It is revealed that too long packet transmissions by short orthogonal pilot sequences (with respect to the packet length) are prone to errors. This especially concerns 2×2 MIMO systems, where channel state estimation by short orthogonal pilot sequences appears to be ineffective or weakly effective.Conclusions. In general, to maintain an appropriate MIMO link data rate, the packet length should be shortened as the motion speed increases. Increasing the number of antennas additionally mitigates Doppler effects. S o, 4 ×4 M IMO s ystem transmissions are indeed efficient. The shortest possible packet transmissions are not affected by Doppler effects if three or four antennas are used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.