Abstract
The biofilm airlift suspension (BAS) reactor can treat wastewater at a high volumetric loading rate combined with a low sludge loading. Two BAS reactors were operated, with an ammonium load of 5 kg N/(m3 d), in order to study the influence of biomass and oxygen concentration on the nitrification process. After start-up the nitrifying biomass in the reactors gradually increased up to 30 g VSS/L. Due to this increased biomass concentration the gas-liquid mass transfer coefficient was negatively influenced. The resulting gradual decrease in dissolved oxygen concentration (over a 2-month period) was associated with a concomitantly nitrite build-up. Short term experiments showed a similar relation between dissolved oxygen concentration (DO) and nitrite accumulation. It was possible to obtain full ammonium conversion with approximately 50% nitrate and 50% nitrite in the effluent. The facts that (i) nitrite build up occurred only when DO dropped, (ii) the nitrite formation was stable over long periods, and (iii) fully depending on DO levels in short term experiments, led to the conclusion that it was not affected by microbial adaptations but associated with intrinsic characteristics of the microbial growth system. A simple biofilm model based on the often reported difference of oxygen affinity between ammonium and nitrite oxydizers was capable of adequately describing the phenomena. Measurements of biomass density and concentration are critical for the interpretation of the results, but highly sensitive to sampling procedures. Therefore we have developed an independent method, based on the residence time of Dextran Blue, to check the experimental methods. There was a good agreement between procedures. The relation between biomass concentration, oxygen mass transfer rate and nitrification in a BAS reactor is discussed. © 1997 John Wiley & Sons, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.