Abstract

Abstract The flow field for different cover ratios within a three-level conical ring concentrator of a centrally-fuel-rich swirl coal combustion burner has been studied both experimentally and numerically. A particle dynamics anemometer measurement system was employed in the study to measure velocity and particle volume flux after the outlet of third-level ring. And the numerical simulations were used to calculate the flow field in the conical ring region. In each cross-section, after the outlet of third-level ring, concentration ratio for each cover ratio is always larger than 2. With conical ring concentrator in the primary air tube, the coal concentration can be concentrated to a suitable range. In the cross-sections 0.5

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.