Abstract

IntroductionThe purpose of this study was to evaluate cyclic fatigue fracture resistance of engine-driven nickel-titanium (K3XF) instruments under reciprocating movement in various angles. MethodsFifty K3XF size 40 taper 0.06 nickel-titanium instruments were divided randomly into 5 groups of 10 each. All instruments were subjected to cyclic fatigue tests. Instruments in groups 1–4 were tested by using different reciprocating motions, whereas instruments of group 5 (control group) were used in continuous rotation. All instruments were rotated or reciprocated until fracture occurred. Time to fracture was recorded, and data were statistically analyzed by using one-way analysis of variance, followed by Tukey honestly significant difference test for comparison between different groups. ResultsAll reciprocating groups (groups 1–4) showed a significant increase in time to failure when compared with group 5 (continuous rotation) (P < .05). Mean time was significantly higher in group 1, followed by group 2. No significant difference was found between groups 3 and 4 (P = .251). Increasing the clockwise angle of reciprocation and consequently increasing the angle of progression for each reciprocation cycle reduced the resistance to cyclic fatigue. ConclusionsMovement kinematics (reciprocating movements in various angles) had a significant influence on the cyclic fatigue life of the tested nickel-titanium instruments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.