Abstract

To observe the therapeutic effects of dexamethasone on rats with severe acute pancreatitis (SAP) and investigate the influences of dexamethasone on the inflammatory mediators and NF-kappaB expression in multiple organs of SAP rats as well as the mechanisms involved. Ninety Sprague-Dawley (SD) rats with SAP were randomly divided into the model group (n = 45) and dexamethasone treatment group (n = 45), and another 45 rats were selected for the sham operation group. All groups were randomly subdivided into the 3 h, 6 h and 12 h groups, each group containing 15 rats. The survival of all groups and pathological changes of multiple organs (liver, kidney and lung) were observed at different time points after the operation. The pathological score of multiple organs was carried out, followed by the determination of amylase, endotoxin and TNF-alpha contents in blood. The tissue microarray was used to detect the expression levels of NF-kappaB p65 protein in multiple organs. There was no marked difference between the model group and treatment group in the survival rate. The amylase content of the treatment group was significantly lower compared to the model group at 12 h (P < 0.01, 7791.00 vs 9195.00). Moreover, the endotoxin and TNF-alpha levels of the treatment group were significantly lower than that of the model group at 6 h and 12 h (P < 0.01, 0.040 vs 0.055, 0.042 vs 0.059 and P < 0.05, 58.30 vs 77.54, 38.70 vs 67.30, respectively). Regarding the changes in liver NF-kappaB expression, the model group significantly exceeded the sham operation group at 3 h (P < 0.01, 1.00 vs 0.00), and the treatment group significantly exceeded the sham operation group at 12 h (P < 0.01, 1.00 vs 0.00), whereas no marked difference was observed between the model group and treatment group at all time points. The kidney NF-kappaB expression level in the treatment group significantly exceeded the model group (P < 0.05, 2.00 vs 0.00) and the sham operation group (P < 0.01, 2.00 vs 0.00) at 12 h. No NF-kappaB expression in the lung was found in any group. Dexamethasone can lower the amylase, endotoxin and TNF-alpha levels as well as mortality of SAP rats. NF-kappaB plays an important role in multiple organ injury. Further studies should be conducted to determine whether dexamethasone can ameliorate the pathological changes of multiple organs by reducing the NF-kappaB expression in the liver and kidney. The advantages of tissue microarrays in pancreatitis pathological examination include time- and energy- saving, and are highly efficient and representative. The restriction of tissue microarrays on the representation of tissues to various extents due to small diameter may lead to the deviation of analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.