Abstract

This work assessed the effect of an enriched culture medium and synthetic seawater on the growth and production of exopolymeric substances (EPS) of a Desulfovibrio sp. strain, isolated from a Mexican oil well. The EPS (mainly consisting of proteins) growth was only achieved after exposing sulfate-reducing bacteria to culture media under dissimilative conditions that predominantly promoted the growth of the biofilm and a small concentration of microorganisms. Once this EPS film was obtained, the evolution of SAE 1018 carbon steel/biofilm/synthetic seawater (VNNS medium) interface was further studied using electrochemical impedance spectroscopy technique (EIS). This study revealed strong adhesion of the biofilm during the formation of iron sulfide (pirrotite) on carbon steel surface. The biofilm inhibits the accelerated damage of the steel for some time exhibiting impedance values of 30 000 Ω. However, at longer times the chemical environment around the biofilm, as a result of microbial metabolism, may become quite corrosive to steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.