Abstract

Al-Mg-Si alloys are medium-strength high-conductivity alloy cable materials that are ideal candidates for electrical engineering applications, but their related electrical conductivity, mechanical properties and textures must be studied in greater detail before such applications can be realized. Different deformation strains (0.98, 1.73 and 2.24) and annealing temperatures (200–500°C) were applied to optimize these properties in Al-Mg-Si alloy cables. The results show that the recrystallized Al-Mg-Si alloy cables exhibit medium yield strength and higher electrical conductivity compared to the non-recrystallized Al-Mg-Si alloy cables with larger average grain sizes. After annealing, the main contributors to the overall texture were the Brass and Goss textures. According to theoretical evaluations, the significant increase in electrical conductivity and decrease in yield strength can be attributed to the decreasing dislocation density and changes to the grain boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.