Abstract

Cyclin D1 (CCND1), a mediator of cell cycle control, has a G870A polymorphism which results in the formation of two splicing variants: full-length CCND1 (CCND1a) and C-terminally truncated CCND1 species (CCND1b). However, the role of CCND1a and CCND1b variants in cancer chemoresistance remains unknown. Therefore, this study aimed to explore the molecular mechanism of alternative splicing of CCND1 in breast cancer (BC) chemoresistance. To address the contribution of G870A polymorphism to the production of CCND1 variants in BC chemoresistance, we sequenced the G870A polymorphism and analysed the expressions of CCND1a and CCND1b in MCF-7 and MCF-7/ADM cells. In comparison with MCF-7 cells, MCF-7/ADM cells with the A allele could enhance alternative splicing with the increase of SC-35, upregulate the ratio of CCND1b/a at both mRNA and protein levels, and activate the CDK4/CyclinD1-pRB-E2F1 pathway. Furthermore, CCND1b expression and the downstream signalling pathway were analysed through Western blotting and cell cycle in MCF-7/ADM cells with knockdown of CCND1b. Knockdown of CCND1b downregulated the ratio of CCND1b/a, demoted cell proliferation, decelerated cell cycle progression, inhibited the CDK4/CyclinD1-pRB-E2F1 pathway and thereby decreased the chemoresistance of MCF-7/ADM cells. Finally, CCND1 G870A polymorphism, the alternative splicing of CCDN1 was detected through Sequenom Mass ARRAY platform, Sanger sequencing, semi-quantitative RT-PCR, Western blotting and immunohistochemistry in clinical BC specimens. The increase of the ratio of CCND1b/a caused by G870A polymorphism was involved in BC chemoresistance. Thus, these findings revealed that CCND1b/a ratio caused by the polymorphism is involved in BC chemoresistance via CDK4/CyclinD1-pRB-E2F1 pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.