Abstract
Effect rules of cooling rate on phase transformation and microstructure of a α+β titanium alloy were studied by thermal dilatometer method. Specimens under different cooling rates from 0.05°C/s to 2.5°C/s were analyzed by using X-ray diffraction (XRD), optical micrograph (OM) and Vickers micro-hardness. The results showed that the starting temperature of β to α phase transformation gradually decreased with the increase of cooling rate. The finishing temperature of β to α phase transformation firstly decreased and then increased with the increase of cooling rate. The typical lamellar structures were observed under the cooling rates from 0.05°C/s to 0.2°C/s. The layer thickness of α phase became thinner and the precipitation content of α phase reduced under the cooling rate of 0.5°C/s. The α phase was fine acicular and the precipitation content of α phase reduced obviously under the cooling rate of 2.5°C. The effect rule of cooling rate on micro-hardness was that the value of micro-hardness firstly decreased and then increased with the cooling rate increasing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.