Abstract
Research of the microtube hydroforming (MTHF) process is being investigated for potential medical and fuel cell applications. This is largely due to the fact that at the macroscale the tube hydroforming (THF) process, like most metal forming processes, has realized many advantages, especially when comparing products made using traditional machining processes. Unfortunately, relatively large forces compared to part size and high pressures are required to form the parts so the potential exists to create failed or defective parts. One method to reduce the forces and pressures during MTHF is to incorporate electrically assisted manufacturing (EAM) and electrically assisted forming (EAF) into the MTHF. The intent of both EAM and EAF is to use electrical current to lower the required deformation energy and increase the metal's formability. To reduce the required deformation energy, the applied electricity produces localized heating in the material in order to lower the material's yield stress. In many cases, the previous work has shown that EAF and EAM have resulted in metals being formed further than conventional forming methods alone without sacrificing the strength or ductility. Tests were performed using “as received” and annealed stainless steel 304 tubing. Results shown in this paper indicate that the ultimate tensile strength and bust pressures decrease with increased current while using EAM during MTHF. It was also shown that at high currents the microtubes experienced higher temperatures but were still well below the recrystallization temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.