Abstract

Abstract The main objective of the research described in this paper was to evaluate how the concrete compressive strength and the geometry of the steel fibres influence the behaviour of the fibre/matrix interface. With this aim, three different concrete matrices were designed with 20, 60 and 100 MPa, and two types of steel fibres were adopted (Dramix ® 3D and Dramix ® 5D). Specific pull-out specimens were produced and three sets of axial tensile tests were defined with different fibres (3D fibres, and 3D and 5D fibres with trimmed ends). A numerical model was calibrated and used to expand the scope of results obtained from the experimental tests. It can be concluded that the concrete compressive strength strongly influences the fibre/matrix strength. In the set with untrimmed 3D fibres, higher strengths were reached due to the hook shaped endings, for all concrete strengths, varying between 64% and 72% of the total load. For fibres with straight endings, increasing both diameter and length lead to higher adhesion and friction strengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.