Abstract

The influence of cold working and grain size on the pitting corrosion resistance of Fe-Cr-Nb-Mo ferritic stainless steel is investigated using optical microscope and electrochemical methods. The pitting corrosion resistance firstly decreases with increasing the cold-rolling reduction from 0% to 30% due to the number of nucleation site increasing. With increasing the cold-rolling reduction from 40% to 60%, the disappearance of grain boundaries, stacked dislocation and uniform microstructure results in the pitting corrosion resistance of the steel. With prolonging the annealing time, the grain size of the steel grows, and the pitting potential of the steel decrease. The smaller grain size promotes the formation of compact passive film and improves the pitting corrosion resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.