Abstract
Lipopeptides can self-assemble into diverse nanostructures which can be programmed to incorporate peptide sequences to achieve a remarkable range of bioactivities. Here, the influence of peptide sequence and chirality on micelle structure and interactions is investigated in a series of lipopeptides bearing two lysine or D-lysine residues and tyrosine or tryptophan residues, attached to a hexadecyl lipid chain. All molecules self-assemble into micelles above a critical micelle concentration (CMC). Small-angle x-ray scattering (SAXS) is used to probe micelle shape and structure from the form factor and to probe inter-micellar interactions via analysis of structure factor. The CMC is obtained consistently from surface tension and electrical conductivity measurements. We introduce a method to obtain the zeta potential from the SAXS structure factor which is in good agreement with directly measured values. Atomistic molecular dynamics simulations provide insights into molecular packing and conformation within the lipopeptide micelles which constitute model self-assembling colloidal systems and biomaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.