Abstract
The influence of the chemical structures of the polyamides on chlorine resistance was studied by measuring their chlorine uptake rates. They were prepared from isophthaloyl dichloride and aliphatic, cycloaliphatic, or aromatic diamines by the solution or interfacial polycondensation method. This study showed that the chlorine resistance was dependent on the chemical structures of the diamine compounds used in the synthesis of the polyamides. We concluded that the polyamides comprising the diamine components with the following chemical structures had higher chlorine resistance: aliphatic or cycloaliphatic diamine compounds with a secondary amino group, aliphatic or cycloaliphatic diamine compounds with a shorter methylene chain length between end amino groups, and aromatic diamine compounds with methyl or chlorine substituents at the ortho position of the amino groups. Chlorine resistance is related to the basicity of the aliphatic and aromatic diamines used. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 201–207, 2000
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.